Next: Search Up: AI Techniques Previous: AI Techniques

Knowledge Representation

Knowledge representation is crucial. One of the clearest results of artificial intelligence research so far is that solving even apparently simple problems requires lots of knowledge. Really understanding a single sentence requires extensive knowledge both of language and of the context. For example, today's (4th Nov) headline ``It's President Clinton'' can only be interpreted reasonably if you know it's the day after the American elections. [Yes, these notes are a bit out of date]. Really understanding a visual scene similarly requires knowledge of the kinds of objects in the scene. Solving problems in a particular domain generally requires knowledge of the objects in the domain and knowledge of how to reason in that domain - both these types of knowledge must be represented.

Knowledge must be represented efficiently, and in a meaningful way. Efficiency is important, as it would be impossible (or at least impractical) to explicitly represent every fact that you might ever need. There are just so many potentially useful facts, most of which you would never even think of. You have to be able to infer new facts from your existing knowledge, as and when needed, and capture general abstractions which represent general features of sets of objects in the world.

Knowledge must be meaningfully represented so that we know how it relates back to the real world. A knowledge representation scheme provides a mapping from features of the world to a formal language. (The formal language will just capture certain aspects of the world, which we believe are important to our problem - we may of course miss out crucial aspects and so fail to really solve our problem, like ignoring friction in a mechanics problem). Anyway, when we manipulate that formal language using a computer we want to make sure that we still have meaningful expressions, which can be mapped back to the real world. This is what we mean when we talk about the semantics of representation languages.



Next: Search Up: AI Techniques Previous: AI Techniques


alison@
Fri Aug 19 10:42:17 BST 1994